
Building projects with make and cmake
CS-210: Introduction to Unix

Robert Bruce

Makefiles: What’s the motivation?

• Open-source projects are often available with source code only. You must build the application for your specific machine
architecture.

• Open-source projects frequently contain many files which must be individually compiled before being linked together into an
application. The files that are linked together are often dependency files or open-source libraries that the project requires in
order to run.

• Makefiles are the instructions for how to effectively build a massive project into an application.

• Building complex applications in the tech industry – especially in teams – is frequently done with Makefiles and variants such as
Cmake.

• Knowing how to create and build with Makefiles is an essential skill Computer Science majors must acquire.

Dissecting a Makefile

CC = gcc

define any compile-time flags

CFLAGS =

define any directories containing header files other than /usr/include

INCLUDES =

define library paths in addition to /usr/lib

if I wanted to include libraries not in /usr/lib I'd specify their path using -Lpath

LFLAGS =

define any libraries to link into executable:

LIBS =

define the C source files

SRCS =

define the C object files

#

This uses Suffix Replacement within a macro:

$(name:string1=string2)

For each word in 'name' replace 'string1' with 'string2'

Below we are replacing the suffix .c of all words in the macro SRCS

with the .o suffix

#

OBJS = $(SRCS:.c=.o)

define the executable file

MAIN =

Dissecting a Makefile: SRCS specifies the source file or files to compile

CC = gcc

define any compile-time flags

CFLAGS =

define any directories containing header files other than /usr/include

INCLUDES =

define library paths in addition to /usr/lib

if I wanted to include libraries not in /usr/lib I'd specify their path using -Lpath

LFLAGS =

define any libraries to link into executable:

LIBS =

define the C source files

SRCS =

define the C object files

#

This uses Suffix Replacement within a macro:

$(name:string1=string2)

For each word in 'name' replace 'string1' with 'string2'

Below we are replacing the suffix .c of all words in the macro SRCS

with the .o suffix

#

OBJS = $(SRCS:.c=.o)

define the executable file

MAIN =

Dissecting a Makefile: SRCS specifies the source file or files to compile

CC = gcc

define any compile-time flags

CFLAGS =

define any directories containing header files other than /usr/include

INCLUDES =

define library paths in addition to /usr/lib

if I wanted to include libraries not in /usr/lib I'd specify their path using -Lpath

LFLAGS =

define any libraries to link into executable:

LIBS =

define the C source files

SRCS = project_file1.c project_file2.c project_file3.c

define the C object files

#

This uses Suffix Replacement within a macro:

$(name:string1=string2)

For each word in 'name' replace 'string1' with 'string2'

Below we are replacing the suffix .c of all words in the macro SRCS

with the .o suffix

#

OBJS = $(SRCS:.c=.o)

define the executable file

MAIN =

Dissecting a Makefile: MAIN specifies the name of the build file
(the binary executable)

CC = gcc

define any compile-time flags

CFLAGS =

define any directories containing header files other than /usr/include

INCLUDES =

define library paths in addition to /usr/lib

if I wanted to include libraries not in /usr/lib I'd specify their path using -Lpath

LFLAGS =

define any libraries to link into executable:

LIBS =

define the C source files

SRCS = project_file1.c project_file2.c project_file3.c

define the C object files

#

This uses Suffix Replacement within a macro:

$(name:string1=string2)

For each word in 'name' replace 'string1' with 'string2'

Below we are replacing the suffix .c of all words in the macro SRCS

with the .o suffix

#

OBJS = $(SRCS:.c=.o)

define the executable file

MAIN = my_project

Dissecting a Makefile (continued)

#

The following part of the makefile is generic; it can be used to

build any executable just by changing the definitions above and by

deleting dependencies appended to the file from 'make depend'

#

.PHONY: depend clean

$(MAIN): $(OBJS)

$(CC) $(CFLAGS) $(INCLUDES) -o $(MAIN) $(OBJS) $(LFLAGS) $(LIBS)

this is a suffix replacement rule for building .o's from .c's

it uses automatic variables $<: the name of the prerequisite of

the rule(a .c file) and $@: the name of the target of the rule (a .o file)

(see the gnu make manual section about automatic variables)

.c.o:

$(CC) $(CFLAGS) $(INCLUDES) -c $< -o $@

clean:

$(RM) *.o *~ $(MAIN)

depend: $(SRCS)

makedepend $(INCLUDES) $^

DO NOT DELETE THIS LINE -- make depend needs it

How to build with make

 To invoke a Makefile and build a project simply type “make” on the command line in the same directory as the Makefile.

The motivation for cmake

 Problem: We live in a world with different operating systems (Unix, Linux, BSD, Microsoft’s Windows 10, Windows 11, Apple’s
iOS, etc.).

 Each of these operating systems locates essential system files in different locations (e.g. compilers, linkers, shared
libraries).

 How can one distribute source code to all these different operating systems and yet ensure that source code can be
built for these systems? The answer: cmake!

 Cmake is a more powerful variant of make.

 With cmake, it is possible to search and identify where on a client’s computer a series of required dependency files
(libraries, projects, etc.) are located, regardless of the operating system!

 Cmake can then create a Makefile that is custom-crafted for the client’s specific computer and dependent file versions.

 Ultimately, the client can then build an application that is specific to their operating system.

How to build with cmake

 Building a project with cmake is usually quite simple and involves two commands:
 cmake .
 make

For further reading

 Managing Projects with GNU Make (3rd Edition) by Robert Mecklenburg. ISBN: 9780596006105

	Building projects with make and cmake
	Makefiles: What’s the motivation?
	Dissecting a Makefile
	Dissecting a Makefile: SRCS specifies the source file or files
	Dissecting a Makefile: SRCS specifies the source file or files (2)
	Dissecting a Makefile: MAIN specifies the name of the build fil
	Dissecting a Makefile (continued)
	How to build with make
	The motivation for cmake
	How to build with cmake
	For further reading

