Low Level Design
CS-370: Software Design and Development
Robert Bruce

High level versus low level design

Low-level design includes detailed information on project implementation.

Low-level design is more detailed than high-level design.

Low-level design prepares programmers for project codification (i.e. writing the software).
High-level design addresses the “what”.

Low-level design addresses the “how”.

Source: pages 155, 180, Beginning Software Engineering (2" edition) by Rod Stephens

Implementing a Relational Database Management System

* One example of low-level design is preparing a database management system (DBMS)
for implementation in a project.

What is a Database Management Systems (DBMS)?

A Database Management System (DBMS) is software to store, retrieve, update, and
delete data stored on disk.

A DBMS utilizes various technigues for storage efficiency, retrieval speed, and possibly
data integrity.

A DBMS is comprised of one or more uniquely-named databases.
Each database in a DBMS contains one or more uniquely named tables.

Each table in a database contains one or more uniquely named columns (or fields) of
data.

A row of data represents one or more columns of data from a database query.

What is a Relational Database Management Systems
(RDBMS)?

A Relational Database Management System (RDBMS) is a common implementation of a
DBMS which can manage data by building relations between columns of data.

Structured Query Language (SQL) is the universal standard language for communicating
with an RDBMS.

The American National Standards Institute (ANSI) defined the SQL standard.
With few exceptions, SQL is consistent and portable regardless of the RDBMS you utilize.

Structured Query Language (SQL): SELECT statement

* INSERT is an SQL statement for adding new data into a table in a database.

* INSERT INTO students (student_id, first_name, last_name) VALUES (912941821,
'Quimby', 'Blastonovich');

Structured Query Language (SQL): SELECT statement

* SELECT is an SQL statement for retrieving data from one or more tables in a database
(depending on the complexity of the query)

* SELECT (first_name, last_name) FROM students WHERE student_id = 912941821;

Structured Query Language (SQL): SELECT statement

* UPDATE is an SQL statement for revising one or more columns of data in a table in a
database.

* UPDATE courses SET enrollment_capacity = 28 WHERE (course_name = 'CS-370') AND
(course_section = 2);

Structured Query Language (SQL): SELECT statement

* DELETE is an SQL statement for removing one or more rows of data in a table in a
database.

* DELETE FROM waitlist WHERE last_date_to_add < NOW();

MySQL datatypes (abridged)

* Numeric data types:
- INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT
- DECIMAL, NUMERIC

* String data types:
- VAR, VARCHAR

* Date data types:
- DATE, DATETIME, TIMESTAMP

Relational Table Design: data normalization

* Data normalization is a structural process to remove data duplication.

Source: pages 170, Beginning Software Engineering (2™ edition) by Rod Stephens

Relational Table Design: First Normal Form (1NF)

“Each column must have a unique name.”

“The order of the rows and columns doesn’t matter.”
“Each column must have a single data type.”

“No two rows can contain identical values.”

“Each column must contain a single value.”
“Columns cannot contain repeating groups.”

Source: pages 170-171, Beginning Software Engineering (2™ edition) by Rod Stephens

Example: Weapons training sigh-up sheet (un-normalized)

NAME WEAPON WEAPON
Shelly Silva Broadsword

Louis Christenson Bow

Lee Hall Katana

Sharon Simmons Broadsword Bow
Felipe Vega Broadsword Katana
Louis Christenson Bow

Kate Ballard Everything

Source: pages 171, Beginning Software Engineering (2" edition) by Rod Stephens

Example

Tutorials
TIME
9:00

9:30
10:00
10:30
11:00
11:30

12:00

: Weapons training sigh-up sheet (1NF)

NAME

Shelly Silva

Louis Christenson
Lee Hall

Sharon Simmons
Felipe Vega

Louis Christenson

Kate Ballard

Tutorial Weapons

TIME
9:00

9:30

10:00
10:30
10:30
11:00
11:00
11:30
12:00
12:00
12:00

WEAPON
Broadsword
Bow
Katana
Broadsword
Bow
Broadsword
Katana
Bow
Broadsword
Bow
Katana

Source: pages 173, Beginning Software Engineering (2" edition) by Rod Stephens

Relational Table Design: Second Normal Form (2NF)

* “Itis in INF.”
* “All non-key fields depend on all key fields.”

Source: page 174, Beginning Software Engineering (2" edition) by Rod Stephens

Example: Camp games schedule (1NF)

TIME GAME DURATION MAXIMUM PLAYERS
1:00 Goblin Launch 60 mins 8

1:00 Water Wizzards 120 mins 6

2:00 Panic at the Picnic 90 mins 12

2:00 Goblin Launch 60 mins 8

3:00 Capture the Castle 120 mins 100

3:00 Water Wizzards 120 mins 6

4:00 Middle Earth Hold’em Poker 90 mins 10

5:00 Capture the Castle 120 mins 100

Source: page 175, Beginning Software Engineering (2" edition) by Rod Stephens

Example: Camp games schedule (2NF)

Scheduled Games Games
TIME GAME GAME DURATION MAXIMUMPLAYERS
1:00 Goblin Launch . .
Goblin Launch 60 min 8

1:00 Water Wizzards

_ o Water Wizzards 120 min 6
2:00 Panic at the Picnic
3:00 Capture the Castle Capture the Castle 120 min 100
3:00 Water Wizzards Middle Earth Hold'em o

. Poker min i

4:00 Middle Earth Hold’em Poker
5:00 Capture the Castle

Source: page 177, Beginning Software Engineering (2" edition) by Rod Stephens

Relational Table Design: Third Normal Form (3NF)

* “ltis in 2NF”
* “It contains no transitive dependencies.”

Source: page 176, Beginning Software Engineering (2" edition) by Rod Stephens

Example: Counselors’ favorite books (1NF)

COUNSELOR FAVORITEBOOK AUTHOR PAGES
Becky Dealing with Dragons Patricia Wrede 240
Charlotte The Last Dragonslayer Jasper Fforde 306
J.C. Gil’'s All Fright Diner A. Lee Martinez 288
Jon The Last Dragonslayer Jasper Fforde 306
Luke The Color of Magic Terry Pratchett 288
Noah Dealing with Dragons Patricia Wrede 240
Rod Equal Rites Terry Prachett 272
Wendy The Lord of the Rings Trilogy J. R. R. Tolkien 1178

Source: page 177, Beginning Software Engineering (2" edition) by Rod Stephens

Example: Counselors’ favorite books (3NF)

Counselor Favorites BookiInfo
COUNSELOR FAVORITEBOOK

BOOK AUTHOR
Becky Dealing with Dragons

Dealing with Dragons Patricia Wrede
Charlotte The Last Dragonslayer
J. C. Gil’s All Fright Diner The Last Dragonslayer Jasper Fforde
Jon The Last Dragonslayer Gil's All Fright Diner A. Lee Martinez
Luke The Color of Magic _

The Color of Magic Terry Pratchett
Noah Dealing with Dragons

_ Equal Rites Terry Pratchett

Rod Equal Rites
Wendy The Lord of the Rings Trilogy The Lord of the Rings Trilogy J. R. R. Tolkien

Source: page 178, Beginning Software Engineering (2" edition) by Rod Stephens

PAGES

240

306

288

288

2172

1178

Defining the database Schema

The database schema is a diagram which defines the structure of the entire database.

Each table in the database should include the names of each column (field) in that table
as well as the datatype for each column (field).

The database schema defines the relationship between tables in the database (i.e. how
the tables are tied together).

| typically draw arrow diagrams pointing to columns (fields) within each table to indicate
how two tables are tied together.

Example Schema

DATABASE SCHEMA: VIDEO MEETING PROJECT

—p | STREAM_ID : BIGSERIAL NOT NULL MESSAGE_ID : UNSIGNED BIGINT NOT NULL
(PRIMARY KEY) (PRIMARY KEY)
STREAM_SIZE_BYTES : UNSIGNED BIGINT NOT NULL MEETING_ID : UNSIGNED BIGINT NOT NULL

USER_ID : UNSIGNED BIGINT NOT NULL SENDER_USER_ID : UNSIGNED BIGINT NOT NULL

—> TRANSCRIPT_ID : UNSIGNED BIGINT NOT NULL

RECIPIENT_USER_ID : UNSIGNED BIGINT NOT NULL

STREAM : BYTEA TIME_SENT : DATESTAMP NOT NULL

MESSAGE : VARCHAR(4096)

IAL NOT NULL

USER_ID : BIGSERL
(PRIMARY KEY)

USER_FULL_NAME : VARCHAR(256)

_ S
PASSWORD : VARCHAR(32)

TRANSCRIPT_ID : BIGSERIAL NOT NULL MEETING_ID : UNSIGNED BIGINT NOT NULL
(PRIMARY KEY) (PART OF PRIMARY KEY)
i USER_ID : UNSIGNED BIGINT NOT NULL
USER_ID: UNSIGNED BIGINT NOT NULL — (PART OF PRIMARY KEY)
STREAM_ID: UNSIGNED BIGINT NOT NULL HAS_HOST_PRIVILEDGES : BOOLEAN NOT NULL
TRANSCRIPT : TEXT TIME_USER_JOIN_MEETING : TIMESTAMP NOT NULL

TIME_USER_LEAVE_MEETING : TIMESTAMP NOT NULL

MEETING.ID : BIGSERIAL NOT NULL
(PRIMARY KEY)

MEETING_CREATOR_USER_ID : UNSIGNED BIGINT NOT NULL

MEETING_START_TIME : TIMESTAMP NOT NULL

MEETING_END_TIME : TIMESTAMP NOT NULL

—— STREAM_ID : UNSIGNED BIGINT NOT NULL

Creating MySQL databases

Before creating tables, one must create a database (a container) to store the tables:
CREATE DATABASE auction;

If you accidentally create the wrong database, you can delete it. This is a very
dangerous command if you have data inside:

DROP DATABASE auction;

Choosing a database to utilize in MySQL: USE

* After creating the database, enter the USE command to choose a database:
* USE auction;

Defining the structure of a MySQL table: CREATE

After creating the database, enter the CREATE command to define the structure of a table in that
database:

CREATE auction (auction_id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
item_id BIGINT NOT NULL, auction_expiration_date DATETIME NOT NULL),

An alternative way to create the table structure (above) is to issue three separate commands:

CREATE TABLE auction (auction_id BIGINT NOT NULL AUTO_INCREMENT PRIMARY
KEY) ;

ALTER TABLE auction ADD item_id BIGINT NOT NULL;
ALTER TABLE auction ADD auction_expiration_date DATETIME NOT NULL,;

If you need to delete a whole table (a very dangerous move if there is data inside the table) you
can do so with the following command:

DROP TABLE auction;

Using MySQL’s proprietary function: AUTO_INCREMENT

AUTO_INCREMENT (with an underscore) is a proprietary function within MySQL to automatically
increment a non-negative integer when inserting a new row of data within a MySQL table.

The AUTO_INCREMENT function is atomic. This means the function is impervious to race-
conditions (i.e. when two rows are inserted at the table at the exact same time, the automatic

increment feature will still work singularly to ensure each row of data has a UNIQUE non-negative
integer.

AUTO_INCREMENT should be used when a column is defined as a PRIMARY KEY and must
contain a unigque value in that column.

Rob’s note: AUTO_INCREMENT is a useful feature but is not defined in the ANSI SQL standard.
Consequently, this MySQL feature will need to be changed when porting MySQL to another RDBMS
such as Postgres (use BIGSERIAL in Postgres — same functionality but also proprietary) or Oracle
(use triggers in Oracle).

Next step: Accessing MySQL through an API

* After creating a database in MySQL and at least one table in that database, the next step
IS connecting to MySQL through your programs.

Accessing MySQL through an API

* Typically, programmers access database management systems through a library or
module. The library or module provides a standard (consistent) interface for issuing
database commands.

. MydsgL provides an Application Programming Interface (API) for compiled languages C
and C++.

- Note: writing your applications with C or C++ means you will need to include a
MySQL includes header file and link to a MySC%L_ library (shared object or dynamic
l/nl\kﬂe kl/]erary) into your compiled application. This is something you would include in
a Makefile.

- 1 will provide example programs in C (with Makefile), C++ (with Makefile), Python,
Perl,k and PHP. These will be uploaded to the files folder under Canvas by next
week.

* Scripting languages such as Python, Perl, or PHP also provide a standard database
Interface to connect to MySQL.

Example: Connecting to MySQL through Python

#1/usr/bin/python3
import mysqgl.connector

cnx = mysqgl.connector.connect(user='username’,
password="'password',host='127.0.0.1"',database="students"')

cnx.close()

Example: Connecting to MySQL through Perl

#1/usr/bin/perl

use strict;
use warnings;
use DBI;

Connect to the database.
my $dbh = DBI-connect("DBI:mysqgl:database=students;host=1ocalhost",
"username", "password", 'RaiseError' => 1});

Disconnect from the database.
$dbh->disconnect();

Example: Connecting to MySQL through PHP

<?php

// Connecting, selecting database

$link = mysql_connect('hostname', 'username', 'password')
or die('Could not connect: ' . mysqgl_error());

// Closing connection
mysgql_close($link);

?>

Example: Connecting to MySQL through C (abridged)

/* connect to server with the CLIENT_MULTI_STATEMENTS option */
if (mysql_real_connect (mysgl, host_name, user_name, password,
db_name, port_num, socket_name, CLIENT_MULTI_STATEMENTS) == NULL)
{
printf("mysql_real_connect() failed\n");
mysqgl_close(mysql);
exit(1);
h

mysqgl_close(mysql);

Example: Connecting to MySQL through C++ (abridged)

MYSQL *conn;
MYSQL_RES *res;
MYSQL_ROW row;

conn = mysql_init(NULL);
if (conn == NULL)

{
std::cerr << "mysql_init() failed\n";
return EXIT_FAILURE;
3
if (mysql_real_connect(conn, "server_host", "username'", "password", "database", 0, NULL, ©) == NULL)
{
std::cerr << "mysql_real_connect() failed\n",
mysql_close(conn);
return EXIT_FAILURE,
}

mysql_close(conn);

	Low Level Design
	High level versus low level design
	Implementing a Relational Database Management System
	What is a Database Management Systems (DBMS)?
	What is a Relational Database Management Systems (RDBMS)?
	Structured Query Language (SQL): SELECT statement
	Structured Query Language (SQL): SELECT statement (2)
	Structured Query Language (SQL): SELECT statement (3)
	Structured Query Language (SQL): SELECT statement (4)
	MySQL datatypes (abridged)
	Relational Table Design: data normalization
	Relational Table Design: First Normal Form (1NF)
	Example: Weapons training sign-up sheet (un-normalized)
	Example: Weapons training sign-up sheet (1NF)
	Relational Table Design: Second Normal Form (2NF)
	Example: Camp games schedule (1NF)
	Example: Camp games schedule (2NF)
	Relational Table Design: Third Normal Form (3NF)
	Example: Counselors’ favorite books (1NF)
	Example: Counselors’ favorite books (3NF)
	Defining the database Schema
	Example Schema
	Creating MySQL databases
	Choosing a database to utilize in MySQL: USE
	Defining the structure of a MySQL table: CREATE
	Using MySQL’s proprietary function: AUTO_INCREMENT
	Next step: Accessing MySQL through an API
	Accessing MySQL through an API
	Example: Connecting to MySQL through Python
	Example: Connecting to MySQL through Perl
	Example: Connecting to MySQL through PHP
	Example: Connecting to MySQL through C (abridged)
	Example: Connecting to MySQL through C++ (abridged)

