Predictive Models
CS-370: Software Design and Development
Robert Bruce



Predictive development model versus Adaptive development model

* Predictive development model: anticipate the project needs based on requirements
then proceed to complete the project.

* Adaptive development model: This model allows for malleable project goals which can
be changed during the development phase.

Source: page 429, Beginning Software Engineering (2™ edition) by Rod Stephens



Predictive development models: Advantages

Predictability: Everything is planned out. You know when the project will be finished.

Stability: Requirements gathering committed at beginning of project. Customer knows
what they will receive when project is finished.

Cost-savings: Developers won’t waste time on irrelevant project details which lead to
dead-ends.

Detailed-design: No decision making necessary in later stages of development. The
decision making occurs up-front in planning stage.

Less refactoring (compared to adaptive models): Code refactoring (or code rewriting) is
minimized in predictive models.

Source: page 431, Beginning Software Engineering (2™ edition) by Rod Stephens



Predictive development models: Advantages (continued)

Fix bugs early: With detailed requirements and design completed, software bugs can be
discovered early in the development process.

Better documentation (compared to adaptive models): predictive models demand
detailed documentation before the development process begins. Adaptive models de-
emphasize documentation and design commitment as a trade-off to support adaptability
and flexibility in development.

More time to prepare training materials: The time spent on documentation before
development of the project gives the project team time during the development phase to
write training materials since the documentation is already committed before development
begins.

Easy maintenance: A well-planned, detailed project is consequently easy to maintain
since the solution was developed elegantly and from a wide-perspective.

Source: page 431, Beginning Software Engineering (2™ edition) by Rod Stephens



Predictive development models: Disadvantages

* Inflexible: Making requirements changes is difficult once the project is in development.

* Later initial release (compared to adaptive models): Customers don’t see a prototype
but rather must wait until the final product is finished.

* Big Design Up Front (BDUF): creates a dependency back-log where developers are
waiting for other developers to complete tasks before other tasks can be started.

Source: page 432, Beginning Software Engineering (2™ edition) by Rod Stephens



Predictive development models: Qualities that lead to success

The following qualities will likely lead to success in predictive models:
* User involvement: Users contribute to the project requirements.
* Clear vision: Customer and developer visions are aligned in the project goals.

* Limited size: The project is small enough that everyone can see the big picture.
Consequently, project requirements do not change over time.

* Experienced team: Team developers have sufficient knowledge to take the project to
completion.

* Realistic: The project objectives are reasonable, supportable, and tenable.

* Established technology: The team developing the project utilizes technology they have
prior experience with.

Source: page 430, Beginning Software Engineering (2™ edition) by Rod Stephens



Predictive development models: Qualities that lead to failure

The following qualities will likely lead to failure in predictive models:

* Incomplete requirements: A project cannot be completed in a predictive model if details
about each requirements are vague or missing.

* Unclear requirements: There is little or no consensus between customers and
developers concerning the project requirements. Consequently, the customer will not be
satisfied with the resultant project.

* Changing requirements: Evolving requirements changes the predictability and the
inherent developmental priorities of a project. Consequently, the project will likely go over-
budget (money), be delayed (time), or both.

* Insufficient resources: An experienced developer is still limited in how much they can
achieve within one week.

Source: page 430, Beginning Software Engineering (2™ edition) by Rod Stephens



Requirements

Predictive model: Waterfall

Verification N

Source: page 433, Beginning Software Engineering (2™ edition) by Rod Stephens

Deployment N

Maintenance




Predictive model: Waterfall with feedback

\ / \
v \ / \

Design \

! -
!v RN

Requirements \ T | \ -
7 N
A4 \ vy, \

Verification

A\

\ I
Implementation\ I \ /
A/ o

Deployment

Source: page 434, Beginning Software Engineering (2™ edition) by Rod Stephens

Maintenance




Predictive model: Sashimi waterfall

Requirements

Verification

Maintenance

Source: page 435, Beginning Software Engineering (2™ edition) by Rod Stephens



Increments in Predictive models

* Arefinement in the predictive model is to develop an application over a
series of iterations.

* |terations provide a feedback-loop in the development process. When all
stages in a predictive model are completed, an iteration is completed and
a product is produced. The product can then be tested and evaluated by
developers and the customers. A new iteration in a predictive model can
then begin with feedback from the previous iteration.

Source: pages 436, Beginning Software Engineering (2™ edition) by Rod Stephens



Predictive model: Incremental waterfall

Requirements I n c re m e nt 1

Design
Verification k
Deployment

Maintenance

m Increment 2
Design ‘
Verification \‘:\

Deployment

Maintenance

Increment 3

Implementation
Verification
Deployment \

Maintenance

Requirements

Time

Source: page 436, Beginning Software Engineering (2™ edition) by Rod Stephens



Predictive model: Incremental Sashimi waterfalls

Requirements

Verification

Deployment

Maintenance

Requirements

Verification

Deployment

Maintenance

Requirements

Verification

Deployment

Maintenance

Time
—

Source: page 437, Beginning Software Engineering (2™ edition) by Rod Stephens



Predictive model: V-model

—_—

Time

Source: page 438, Beginning Software Engineering (2™ edition) by Rod Stephens



Composition of the V-model

* The left side of the V-model outlines the tasks required to build the
project through a process called decomposition.

* The right side of the V-model outlines various stages of completion for
the final project through a process called integration.

Source: pages 438-439, Beginning Software Engineering (2" edition) by Rod Stephens



Software Development Life Cycle (SDLC)

Requirements

Maintenance Design

Software Development Life Cycle

Deployment Implementation

Verification

Source: page 439, Beginning Software Engineering (2™ edition) by Rod Stephens



	Predictive Models
	Predictive development model versus Adaptive development model
	Predictive development models: Advantages
	Predictive development models: Advantages (continued)
	Predictive development models: Disadvantages
	Predictive development models: Qualities that lead to success
	Predictive development models: Qualities that lead to failure
	Predictive model: Waterfall
	Predictive model: Waterfall with feedback
	Predictive model: Sashimi waterfall
	Increments in Predictive models
	Predictive model: Incremental waterfall
	Predictive model: Incremental Sashimi waterfalls
	Predictive model: V-model
	Composition of the V-model
	Software Development Life Cycle (SDLC)

