Server-side Web Applications
CS-370: Software Design and Development
Robert Bruce

Server-side web applications

The World Wide Web is comprised of static and dynamic web-content.

Static web content is a text file written in HTML. This content does not change and can be
sent to a web-browser directly from the server.

Server-side dynamic web content is generated on-the-fly by a web server.

One method for generating dynamic web-content is via server-side applications and the
Common Gateway Interface (CGl).

The Common Gateway Interface (CGl) acts as a communications layer between a client
(web browser) and a program running on a web server.

CGIl example: user login authentication

One example which uses the Common Gateway Interface (CGl) is a login-in web page.

A user enters their “username” and “password” through a form which is sent to a server-side
application (via CGl) for authentication processing.

The authentication process involves verifying that the given username exists and the password
matches what the user entered.

If authentication is successful, the server side application creates dynamic web page content
welcoming the user to a landing page (or some members-only area of a website).

It is important to note, HTTP is a stateless protocol. This means HTTP doesn’t remember the
authentication which just occurred. Therefore we will need some sort of mechanism to remember
the user (and not endlessly prompt the user to authenticate over-and-over again).

One mechanism to “remember” users is called an HTTP cookie.

Another mechanism to “remember” users is amending the URL with a parameter while the user is
logged-in. This is called session management.

Parameter passing in the Common Gateway Interface

* A web server communicates with an application in the Common Gateway Interface in one
of two ways:

— GET protocol

— POST protocol

* The GET protocol embeds variable and value pairs in the URL. The web server sends

these variable value pairs to server-side applications via the environment variable
“QUERY_STRING”.

* The POST protocol sends a bunch of variable-value pairs through the environment
variable “CONTENT _LENGTH". The POST method is transparent to the user (i.e. not
visible in the URL).

GET protocol

* The GET protocol embeds all variable-value pairs inside the URL. For example:

* process_form data.cgi?first name=Robert&middle name=Jamesé&last name=Bruce&favorite programming language=Cé&operating system usedl=GNU%2FLinux

* We can break apart the above URL into variable-value pairs as follows (the ampersand serves as a
delimiter to separate variable-value pairs):

1) first name=Robert

2) middle name=James

3) last name=Bruce

4) favorite programming language=C

5) operating system usedl=GNU%2FLinux

GET protocol

* We can further separate each variable-value pairs using the equals as a delimiter:
— VARIABLE: first name

— VALUE: Robert

— VARIABLE: middle name

— VALUE: James

— VARIABLE: last name

— VALUE: Bruce

— VARIABLE: favorite programming language
— VALUE: C

— VARIABLE: operating system usedl
— VALUE: GNU%2FLinux

GET protocol

* You may have noticed the last variable-value pair was as follows:
— VARIABLE: operating system usedl
— VALUE: GNU%2FLinux

* The “%2F” is HTML code for a slash symbol /" (ASCIl hex code 2F).

* We have to convert to convert the “%2F” back into a slash ourselves. After
the conversion, the value (above) then would be “GNU/Linux”.

HTML forms

* The GET and POST methods are utilized in HTML forms.
* HTML forms retrieve input from a user’s web browser via an HTML web page.
* HTML forms may contain the following types of user-input:

— Radio buttons: only one button is selectable

— Check boxes: one or more buttons are selectable

— Text entry boxes: fill in a string of text

— Pull-down menus: select an option from a predefined menu

— A “Submit” button

— A “Cancel” button

— A user-labeled button

HTML forms

* When defining each HTML form input type (e.g. text box, radio button, push
button, etc.) we should define the variable (which will store the user’s input).
This variable is ultimately what we will be looking for in our variable-value
pairs on the server-side.

* For text entry boxes, the value is whatever the user entered in the text box.

* For radio buttons, check boxes, push buttons, etc. We define what the value
will be when the user presses that button.

HTML forms

* When defining an HTML form, it is vital you define the “action” element.

* The “action” element defines the URL which will process the HTML form data
when the user presses the “submit” button.

* The “method” element defines how the data in the HTML form will be sent to
the server and ultimately our programs via the Common Gateway Interface.
There are two possible values: GET or POST.

An example HTML form

<form action="https://blue.cs.sonoma.edu/~rbruce/cgi/process form data.cgi" enctype="application/x-
www—form-urlencoded" method="post">

<p>Please select one of the following options then press the submit button:</p>

<input type="radio" 1d="DISPLAY GET FORM" name="use form protocol" value="get">
<label for="DISPLAY GET FORM">Display an HTML form using GET protocol</label>

<input type="radio" 1d="DISPLAY POST FORM" name="use form protocol" value="post">
<label for="DISPLAY POST FORM">Display an HTML form using the POST protocol</label>

<lnput type="submit" value="Submit">

</form>

The example HTML form

<form action="https://blue.cs.sonoma.edu/~rbruce/cgi/process form data.cgi" enctype="application/x-
www—form-urlencoded" method="post">

<p>Please select one of the following options then press the submit button:</p>

<input type="radio" 1d="DISPLAY GET FORM" name="use form protocol" value="get">

<label for="DISPLAY GET FORM">Display an HTML form using GET protocol</label>

<input type="radio" 1d="DISPLAY POST FORM" name="use form protocol" value="post">

<label for="DISPLAY POST FORM">Display an HTML form using the POST protocol</label>

<lnput type="submit" value="Submit">
</form>

Dissecting the example HTML form

action="https://blue.cs.sonoma.edu/~rbruce/cgi/process form data.cgi"

* The action command (above) species the URL to submit data to when the
user presses the “submit” button.

* Tip: notice the server-side application above is called
“brocess form data.cqi”. | purposefully labeled this server-side application
with a generic “dot cgi” extension for security reasons. | don’t reveal to the
client (user) what programming language | used to write the server-side
application.

The example HTML form

<form action="https://blue.cs.sonoma.edu/~rbruce/cgi/process form data.cgi" enctype="application/x-
www—form-urlencoded" method="post">

<p>Please select one of the following options then press the submit button:</p>

<input type="radio" 1d="DISPLAY GET FORM" name="use form protocol" value="get">

<label for="DISPLAY GET FORM">Display an HTML form using GET protocol</label>

<input type="radio" 1d="DISPLAY POST FORM" name="use form protocol" value="post">

<label for="DISPLAY POST FORM">Display an HTML form using the POST protocol</label>

<lnput type="submit" value="Submit">
</form>

The example HTML form

<form action="https://blue.cs.sonoma.edu/~rbruce/cgi/process form data.cgi" enctype="application/x-
www—form-urlencoded" method="post">

<p>Please select one of the following options then press the submit button:</p>

<input type="radio" 1d="DISPLAY GET FORM" name="use form protocol" value="get">

<label for="DISPLAY GET FORM">Display an HTML form using GET protocol</label>

<input type="radio" 1d="DISPLAY POST FORM" name="use form protocol" value="post">

<label for="DISPLAY POST FORM">Display an HTML form using the POST protocol</label>

<lnput type="submit" value="Submit">
</form>

Dissecting the example HTML form

method="post"

* All data specified in the HTML form will be sent to the server (and ultimately
to our server-side application via the POST protocaol.

The example HTML form

<form action="https://blue.cs.sonoma.edu/~rbruce/cgi/process form data.cgi" enctype="application/x-
www—form-urlencoded" method="post">

<p>Please select one of the following options then press the submit button:</p>

<input type="radio" 1d="DISPLAY GET FORM" name="use form protocol" value="get">

<label for="DISPLAY GET FORM">Display an HTML form using GET protocol</label>

<input type="radio" 1d="DISPLAY POST FORM" name="use form protocol" value="post">

<label for="DISPLAY POST FORM">Display an HTML form using the POST protocol</label>

<lnput type="submit" value="Submit">
</form>

The example HTML form

<form action="https://blue.cs.sonoma.edu/~rbruce/cgi/process form data.cgi" enctype="application/x-
www—form-urlencoded" method="post">

<p>Please select one of the following options then press the submit button:</p>

<input type='"radio" id="DISPLAY GET_ FORM" name="use_ form protocol" value="get">

<label for="DISPLAY GET FORM">Display an HTML form using GET protocol</label>

<input type="radio" 1d="DISPLAY POST FORM" name="use form protocol" value="post">

<label for="DISPLAY POST FORM">Display an HTML form using the POST protocol</label>

<lnput type="submit" value="Submit">
</form>

Dissecting the example HTML form

<input type="radio" id="DISPLAY GET FORM" name="use form protocol" value='"get">

* This radio button’s variable is “use form_protocol”.
* |If selected by the user, this variable’s value will be “get”.

* The “id” field is used for screen-readers to make the web form easy to fill-out
for visually impaired users.

The example HTML form

<form action="https://blue.cs.sonoma.edu/~rbruce/cgi/process form data.cgi" enctype="application/x-
www—form-urlencoded" method="post">

<p>Please select one of the following options then press the submit button:</p>

<input type="radio" 1d="DISPLAY GET FORM" name="use form protocol" value="get">

<label for="DISPLAY GET FORM">Display an HTML form using GET protocol</label>

<input type="radio" 1d="DISPLAY POST FORM" name="use form protocol" value="post">

<label for="DISPLAY POST FORM">Display an HTML form using the POST protocol</label>

<lnput type="submit" value="Submit">
</form>

The example HTML form

<form action="https://blue.cs.sonoma.edu/~rbruce/cgi/process form data.cgi" enctype="application/x-
www—form-urlencoded" method="post">

<p>Please select one of the following options then press the submit button:</p>

<input type="radio" 1d="DISPLAY GET FORM" name="use form protocol" value="get">

<label for="DISPLAY GET FORM">Display an HTML form using GET protocol</label>

<input type="radio" id="DISPLAY POST FORM" name="use form protocol" value="post">

<label for="DISPLAY POST FORM">Display an HTML form using the POST protocol</label>

<lnput type="submit" value="Submit">
</form>

Dissecting the example HTML form

<input type="radio" id="DISPLAY POST FORM" name="use form protocol" value="post">

* This radio button’s variable is “use form_protocol”.
* |If selected by the user, this variable’s value will be “post”.

* The “id” field is used for screen-readers to make the web form easy to fill-out
for visually impaired users.

The example HTML form

<form action="https://blue.cs.sonoma.edu/~rbruce/cgi/process form data.cgi" enctype="application/x-
www—form-urlencoded" method="post">

<p>Please select one of the following options then press the submit button:</p>

<input type="radio" 1d="DISPLAY GET FORM" name="use form protocol" value="get">

<label for="DISPLAY GET FORM">Display an HTML form using GET protocol</label>

<input type="radio" 1d="DISPLAY POST FORM" name="use form protocol" value="post">

<label for="DISPLAY POST FORM">Display an HTML form using the POST protocol</label>

<lnput type="submit" value="Submit">
</form>

An example HTML form

<form action="https://blue.cs.sonoma.edu/~rbruce/cgi/process form data.cgi" enctype="application/x-
www—form-urlencoded" method="post">

<p>Please select one of the following options then press the submit button:</p>

<input type="radio" 1d="DISPLAY GET FORM" name="use form protocol" value="get">

<label for="DISPLAY GET FORM">Display an HTML form using GET protocol</label>

<input type="radio" 1d="DISPLAY POST FORM" name="use form protocol" value="post">

<label for="DISPLAY POST FORM">Display an HTML form using the POST protocol</label>

<input type='"submit" wvalue="Submit'">
</form>

Dissecting the example HTML form

<input type="submit" wvalue='"Submit'>
* This push button’s variable is “submit”.

* This push button’s value is “Submit”. That is also the label which will appear
on the button.

* |If the user presses this button, the user’s browser will send the user’s form
data to the URL specified in the ACTION tag.

* The “submit” button variable value pair will also be submitted to the server
along with any other variable-value pairs specified in the HTML form.

Example: server-side CGI web application

I've created an example server-side CGI application in the C programming language for
you.

I've created a Makefile to build this application on Blue.
To download this program, please see the Files folder under Canvas. Then click

(1Pt

“Example programs”. Then click “Common Gateway Interface”. Then click “c”. You should
see two files in this folder: “Makefile” and “process form_data.c”

You may also run this application under Blue:
https://blue.cs.sonoma.edu/~rbruce/cgi/process_form_data.cqi

https://blue.cs.sonoma.edu/~rbruce/cgi/process_form_data.cgi

Retaining state in HTTP

* Maintaining state on a website is critical for any functionality that is members-only or
requires some sort of authentication before being able to view or access content.

* Typically one creates two web-based forms on their website for such functionality:
— Aregistration page to sign-up and create a new account to access the website.

— A user-login / password page for existing users who have already signed-up for an
account.

Retaining state in HTTP

How do you maintain state within HTTP since it is a stateless protocol?
— HTTP cookie
— Defining a session variable.

The HTTP cookie method is not reliable since users may disable cookies. HTTP cookies are created by your
web browser (client). They are small files the browser creates and stores on the user’s computer. This small
file contains a variable-value pair. A server-side application can ask your browser (client) to read the cookie
(if it exists and you allow cookies to be read).

| don’t rely on cookies at all for website development. | use sessions. Sessions are transparent to the user
and always work.

A session is simply a variable (session) and a value that | embed in an HTML form as a hidden variable or |
embed as a variable=value pair within a URL (if using the GET method).

PHP has built-in session management. C and C++ do not have such functionality built-in.

TIP: | encrypt session values on the server. The client never sees the unencrypted session value. This keeps
clients from tampering with session values and makes it exceptionally difficult to compromise my website.

For further reading...

If you are interested in all various types of environment variables the web-server could
send to your server-side application via the Common Gateway Interface, please review the

document:
RFC-3875: The Common Gateway Interface (version 1.1)

https://www.ietf.org/rfc/rfc3875

https://www.ietf.org/rfc/rfc3875

	Server-side Web Applications
	Server-side web applications
	CGI example: user login authentication
	Parameter passing in the Common Gateway Interface
	GET protocol
	GET protocol (2)
	GET protocol (3)
	HTML forms
	HTML forms (2)
	HTML forms (3)
	An example HTML form
	The example HTML form
	Dissecting the example HTML form
	The example HTML form (2)
	The example HTML form (3)
	Dissecting the example HTML form (2)
	The example HTML form (4)
	The example HTML form (5)
	Dissecting the example HTML form (3)
	The example HTML form (6)
	The example HTML form (7)
	Dissecting the example HTML form (4)
	The example HTML form (8)
	An example HTML form (2)
	Dissecting the example HTML form (5)
	Example: server-side CGI web application
	Retaining state in HTTP
	Retaining state in HTTP (2)
	For further reading...

